Словари

А Б В Г Д Е З И К Л М Н О Ф Х Ц Ч Ш Э Я
ЧЕ ЧЖ ЧИ

ЧИСЛОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ

ЧИСЛОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ – функция вида y = f(x), x О N, где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f(n) или y1, y2,…, yn,…. Значения y1, y2, y3,… называют соответственно первым, вторым, третьим, … членами последовательности.
Например, для функции y = n2 можно записать:
y1 = 12 = 1;
y2 = 22 = 4;
y3 = 32 = 9;…yn = n2;…
Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.
1. Последовательность задана аналитически, если задана формула ее n-го члена:
yn = f(n).
Пример. yn = 2n – 1 – последовательность нечетных чисел: 1, 3, 5, 7, 9, …
2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.
Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….
Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.
3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n-й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n-й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.
Пример 1. y1 = 3; yn = yn–1 + 4, если n = 2, 3, 4,….
Здесь y1 = 3; y2 = 3 + 4 = 7; y3 = 7 + 4 = 11; ….
Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: yn = 4n – 1.
Пример 2. y1 = 1; y2 = 1; yn = yn–2 + yn–1 , если n = 3, 4,….
Здесь: y1 = 1; y2 = 1; y3 = 1 + 1 = 2; y4 = 1 + 2 = 3; y5 = 2 + 3 = 5; y6 = 3 + 5 = 8;
Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n-е число Фибоначчи выражается через его порядковый номер следующей формулой .
На первый взгляд, формула для n-го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n.

Свойства числовых последовательностей. Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.
Определение. Последовательность называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:
y1 y2 y3 yn yn+1 Последовательность называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:
y1 > y2 > y3 > … > yn > yn+1 > … .
Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.
Пример 1. y1 = 1; yn = n2Пример 2. y1 = 1; – убывающая последовательность.
Пример 3. y1 = 1; src="image006.gif" align="absmiddle"> – эта последовательность не является невозрастающей и неубывающей.
Определение. Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.
Пример. Последовательность периодична с длиной периода T = 2.

Арифметическая прогрессия. Числовую последовательность, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называют арифметической прогрессией, а число d – разностью арифметической прогрессии.
Таким образом, арифметическая прогрессия – это числовая последовательность , заданная рекуррентно соотношениями
a1 = a, an = an–1 + d (n = 2, 3, 4, …)
(a и d – заданные числа).
Пример. 1, 3, 5, 7, 9, 11, … – возрастающая арифметическая прогрессия, у которой a1 = 1, d = 2.
Пример. 20, 17, 14, 11, 8, 5, 2, –1, –4,… – убывающая арифметическая прогрессия, у которой a1 = 20, d = –3.
Нетрудно найти явное (формульное) выражение an через n. Величина очередного элемента возрастает на d по сравнению с предыдущим, таким образом, величина n элемента возрастет на величину (n – 1)d по сравнению с первым членом арифметической прогрессии, т.е.
an = a1 + d(n – 1).
Это формула n-го члена арифметической прогрессии.
Используя явное выражение an через n, можно доказать следующее свойство арифметической прогрессии: если натуральные числа i, j, k, l таковы, что i + j = k + l, то ai + aj= ak + al. Чтобы в этом убедиться, достаточно подставить i, j, k и l вместо n в формулу n-го члена арифметической прогрессии и сложить. Отсюда следует, что если рассматривать первые n членов арифметической прогрессии, то суммы членов, равно отстоящих от концов, будут одинаковы:
a1 + an = a2 + an–1 = a3 + an–2 = … = 2a1 + (n – 1)d.
Последнее равенство позволяет вычислить сумму первых n членов арифметической прогрессии:
Sn = a1 + a2 + … + an–1 + an.
С этой целью берется еще одна такая же сумма, но слагаемые записывается в обратном порядке:
Sn = an + an–1 + … + a2 + a1.
Далее она складывается почленно с исходной суммой, причем слагаемые сразу попарно группируются. В результате
2Sn = (a1 + an) + (a2 + an–1) + … + (an + a1) = n(2a1 + (n – 1)d),
откуда . Это формула суммы n членов арифметической прогрессии.
Арифметической прогрессия названа потому, что в ней каждый член, кроме первого, равен среднему арифметическому двух соседних с ним – предыдущего и последующего. Действительно, так как
an = an–1 + d;
an = an+1 – d.
Сложение двух последних равенств дает .
Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.
Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?
Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению
5x – 4 = ((3x + 2) + (11x + 12))/2.
Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.
на заглавную О сайте10 самыхСловариОбратная связь к началу страницы
© 2011 - 2013
Словарь
Словарь online
XHTML | CSS
1.8.11