ЧИСЛОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ функция вида y = f(x), x О N, где N множество натуральных чисел (или функция натурального аргумента), обозначается y = f(n) или y1, y2,…, yn,…. Значения y1, y2, y3,… называют соответственно первым, вторым, третьим, … членами последовательности.
Например, для функции y = n2 можно записать:
y1 = 12 = 1;
y2 = 22 = 4;
y3 = 32 = 9;…yn = n2;…
Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.
1. Последовательность задана аналитически, если задана формула ее n-го члена:
yn = f(n).
Пример. yn = 2n 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …
2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.
Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….
Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.
3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n-й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n-й член последовательности через предыдущие, и задают 12 начальных члена последовательности.
Пример 1. y1 = 3; yn = yn1 + 4, если n = 2, 3, 4,….
Здесь y1 = 3; y2 = 3 + 4 = 7; y3 = 7 + 4 = 11; ….
Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: yn = 4n 1.
Пример 2. y1 = 1; y2 = 1; yn = yn2 + yn1 , если n = 3, 4,
.
Здесь: y1 = 1; y2 = 1; y3 = 1 + 1 = 2; y4 = 1 + 2 = 3; y5 = 2 + 3 = 5; y6 = 3 + 5 = 8;
Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически очень трудно. n-е число Фибоначчи выражается через его порядковый номер следующей формулой .
На первый взгляд, формула для n-го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n.
Свойства числовых последовательностей. Числовая последовательность частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.
Определение. Последовательность называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:
y1 y2 y3 yn yn+1 Последовательность называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:
y1 > y2 > y3 > … > yn > yn+1 > … .
Возрастающие и убывающие последовательности объединяют общим термином монотонные последовательности.
Пример 1. y1 = 1; yn = n2Пример 2. y1 = 1; убывающая последовательность.
Пример 3. y1 = 1; src="image006.gif" align="absmiddle"> эта последовательность не является невозрастающей и неубывающей.
Определение. Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.
Пример. Последовательность периодична с длиной периода T = 2.
Арифметическая прогрессия. Числовую последовательность, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называют арифметической прогрессией, а число d разностью арифметической прогрессии.
Таким образом, арифметическая прогрессия это числовая последовательность , заданная рекуррентно соотношениями
a1 = a, an = an1 + d (n = 2, 3, 4,
)
(a и d заданные числа).
Пример. 1, 3, 5, 7, 9, 11, … возрастающая арифметическая прогрессия, у которой a1 = 1, d = 2.
Пример. 20, 17, 14, 11, 8, 5, 2, 1, 4,… убывающая арифметическая прогрессия, у которой a1 = 20, d = 3.
Нетрудно найти явное (формульное) выражение an через n. Величина очередного элемента возрастает на d по сравнению с предыдущим, таким образом, величина n элемента возрастет на величину (n 1)d по сравнению с первым членом арифметической прогрессии, т.е.
an = a1 + d(n 1).
Это формула n-го члена арифметической прогрессии.
Используя явное выражение an через n, можно доказать следующее свойство арифметической прогрессии: если натуральные числа i, j, k, l таковы, что i + j = k + l, то ai + aj= ak + al. Чтобы в этом убедиться, достаточно подставить i, j, k и l вместо n в формулу n-го члена арифметической прогрессии и сложить. Отсюда следует, что если рассматривать первые n членов арифметической прогрессии, то суммы членов, равно отстоящих от концов, будут одинаковы:
a1 + an = a2 + an1 = a3 + an2 =
= 2a1 + (n 1)d.
Последнее равенство позволяет вычислить сумму первых n членов арифметической прогрессии:
Sn = a1 + a2 + … + an1 + an.
С этой целью берется еще одна такая же сумма, но слагаемые записывается в обратном порядке:
Sn = an + an1 + … + a2 + a1.
Далее она складывается почленно с исходной суммой, причем слагаемые сразу попарно группируются. В результате
2Sn = (a1 + an) + (a2 + an1) +
+ (an + a1) = n(2a1 + (n 1)d),
откуда . Это формула суммы n членов арифметической прогрессии.
Арифметической прогрессия названа потому, что в ней каждый член, кроме первого, равен среднему арифметическому двух соседних с ним предыдущего и последующего. Действительно, так как
an = an1 + d;
an = an+1 d.
Сложение двух последних равенств дает .
Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.
Пример. При каком значении x числа 3x + 2, 5x 4 и 11x + 12 образуют конечную арифметическую прогрессию?
Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению
5x 4 = ((3x + 2) + (11x + 12))/2.
Решение этого уравнения дает x = 5,5. При этом значении x заданные выражения 3x + 2, 5x 4 и 11x + 12 принимают, соответственно, значения 14,5, 31,5, 48,5. Это арифметическая прогрессия, ее разность равна 17.